Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

H-LPS: a hybrid approach for user's location privacy in location-based services (2212.08241v1)

Published 16 Dec 2022 in cs.CR

Abstract: Applications providing location-based services (LBS) have gained much attention and importance with the notion of the internet of things (IoT). Users are utilizing LBS by providing their location information to third-party service providers. However, location data is very sensitive that can reveal user's private life to adversaries. The passive and pervasive data collection in IoT upsurges serious issues of location privacy. Privacy-preserving location-based services are a hot research topic. Many anonymization and obfuscation techniques have been proposed to overcome location privacy issues. In this paper, we have proposed a hybrid location privacy scheme (H-LPS), a hybrid scheme mainly based on obfuscation and collaboration for protecting users' location privacy while using location-based services. Obfuscation naturally degrades the quality of service but provides more privacy as compared to anonymization. Our proposed scheme, H-LPS, provides a very high-level of privacy yet provides good accuracy for most of the users. The privacy level and service accuracy of H-LPS are compared with state-of-the-art location privacy schemes and it is shown that H-LPS could be a candidate solution for preserving user location privacy in location-based services.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sonia Sabir (5 papers)
  2. Inayat Ali (7 papers)
  3. Eraj Khan (2 papers)

Summary

We haven't generated a summary for this paper yet.