Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iCardo: A Machine Learning Based Smart Healthcare Framework for Cardiovascular Disease Prediction (2212.08022v1)

Published 7 Dec 2022 in cs.CY

Abstract: The point of care services and medication have become simpler with efficient consumer electronics devices in a smart healthcare system. Cardiovascular disease is a critical illness which causes heart failure, and early and prompt identification can lessen damage and prevent premature mortality. Machine learning has been used to predict cardiovascular disease (CVD) in the literature. The article explains choosing the best classifier model for the selected feature sets and the distinct feature sets selected using four feature selection models. The paper compares seven classifiers using each of the sixteen feature sets. Originally, the data had 56 attributes and 303 occurrences, of which 87 were in good health, and the remainder had cardiovascular disease (CVD). Demographic data with several features make up the four groups of overall features. Lasso, Tree-based algorithms, Chi-Square and RFE have all been used to choose the four distinct feature sets, each containing five, ten, fifteen, and twenty features, respectively. Seven distinct classifiers have been trained and evaluated for each of the sixteen feature sets. To determine the most effective blend of feature set and model, a total of 112 models have been trained, tested, and their performance has been compared. SVM classifier with fifteen chosen features is shown to be the best in terms of overall accuracy. The healthcare data has been maintained in the cloud and would be accessible to patients, caretakers, and healthcare providers through integration with the Internet of Medical Things (IoMT) enabled smart healthcare. Subsequently, the feature selection model chooses the most appropriate feature for CVD prediction to calibrate the system, and the proposed framework can be utilised to anticipate CVD.

Citations (4)

Summary

We haven't generated a summary for this paper yet.