Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minors, connectivity, and diameter in randomly perturbed sparse graphs (2212.07192v1)

Published 14 Dec 2022 in math.CO

Abstract: Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every $n$-vertex graph $G$ contains a complete minor of order $\Omega(n/\alpha(G))$. We prove that adding $\xi n$ random edges, where $\xi > 0$ is arbitrarily small yet fixed, to an $n$-vertex graph $G$ satisfying $\alpha(G) \leq \zeta(\xi)n$ asymptotically almost surely results in a graph containing a complete minor of order $\tilde \Omega \left( n/\sqrt{\alpha(G)}\right)$; this result is tight up to the implicit logarithmic terms. For complete topological minors, we prove that there exists a constant $C>0$ such that adding $C n$ random edges to a graph $G$ satisfying $\delta(G) = \omega(1)$, asymptotically almost surely results in a graph containing a complete topological minor of order $\tilde \Omega(\min{\delta(G),\sqrt{n}})$; this result is tight up to the implicit logarithmic terms. Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.