Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Units in Blocks of Defect 1 and the Zassenhaus Conjecture (2212.06634v1)

Published 13 Dec 2022 in math.RA, math.GR, and math.RT

Abstract: Building on previous work by Caicedo and the second author, we develop a method that decides the existence of units of finite order in blocks of $\mathbb{Z}p G$ of defect 1. This allows us to prove that if $p$ is a prime and $G$ is a finite group whose Sylow $p$-subgroup has order $p$, then any unit $u\in \mathbb{Z} G$ of order $p$ is conjugate to an element of $\pm G$. This is a special case of the Zassenhaus conjecture. We also prove some new results on units of finite order in $\mathbb{Z} \mathrm{PSL}(2,q)$ for certain $q$, and construct a unit of order $15$ in $V(\mathbb{Z}{(3,5)}\mathrm{PSL}(2,16))$ which is a $3$- and $5$-local counterexample to the Zassenhaus conjecture, raising the hope that our methods may lead to a global counterexample amongst simple groups.

Summary

We haven't generated a summary for this paper yet.