Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral asymptotics for solutions of $2\times 2$ system of ordinary differential equations of the first order (2212.06227v1)

Published 12 Dec 2022 in math.FA and math.SP

Abstract: The aim of the paper is to find representation for solutions of $2\times 2$ system of ordinary differential equations $$ \mathbf{y\prime} - B(x)\mathbf{y} = \lambda A(x)\mathbf{y}, \quad \ x \in [0, 1], $$ where $A(x) = diag{a_1(x), a_2(x)}$, $B(x) = (b_{ij}(x))$, $a_1(x) > 0, \ a_2(x) < 0$ and all the functions $a_{i}, b_{ij}$ belong to the Sobolev spaces $Wn_1[0,1]$ for given integer $n\geqslant 0$. We prove that there exists a fundamental matrix of solutions for the above system, which have representation $$ Y(x, \lambda) = M(x)\left(I + \frac{R1(x)}{\lambda} + \dots + \frac{Rn(x)}{\lambdan} + o(1)\lambda{-n}\right)E(x, \lambda), $$ where $o(1) \to 0$ uniformly for $x\in [0,1]$ as the spectral parameter $\lambda \to \infty$ in the half plane $\Re\,\lambda >-\kappa$ or $\Re\,\lambda <\kappa$, where $\kappa$ is any fixed real number. The main novelty is that we give explicit formulae for all matrices $M,E$ and $Rm$ in this representation.

Summary

We haven't generated a summary for this paper yet.