Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid determination of LISA sensitivity to extreme mass ratio inspirals with machine learning (2212.06166v2)

Published 12 Dec 2022 in astro-ph.HE and gr-qc

Abstract: Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in population inference analyses. We apply our method to an astrophysically motivated EMRI population model, demonstrating the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that LISA will measure the MBH mass function slope to a precision of 8.8%, the CO mass function slope to a precision of 4.6%, the width of the MBH spin magnitude distribution to a precision of 10% and the event rate to a precision of 12% with EMRIs at redshifts below z=6.

Citations (10)

Summary

We haven't generated a summary for this paper yet.