Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IRS-Assisted Millimeter-wave Massive MIMO with Transmit Antenna Selection for IoT Networks (2212.05854v1)

Published 12 Dec 2022 in cs.IT, eess.SP, and math.IT

Abstract: An intelligent reflecting surface (IRS)-assisted millimeter-wave (mmWave) massive multiple input multiple output (MIMO) system with transmit antenna selection (TAS) using orthogonal space-time block codes (OSTBC) scheme is proposed in this paper. This system combines TAS and IRS with hybrid analog-digital beamforming (HBF) for 60 GHz mmWave communications in order to exploit the benefits of TAS, OSTBC, analog beamforming (ABF), and transmit digital precoding techniques. The proposed system, however, benefits from the transmit diversity gain of OSTBC scheme as well as from the signal-to-noise ratio (SNR) gains of both the beamformer and the IRS technology. The simulation results demonstrate that TAS-OSTBC system with zero-forcing precoding technique outperforms the conventional TAS system with OSTBC scheme. Furthermore, the bit error rate (BER) performance significantly im-proves as the number of antenna array elements increases due to providing a beamforming gain. In addition, increasing the number of reflecting elements further enhances the error performance. It is also found from the simulation results that the TAS-OSTBC system with hybrid precoding has better BER performance than that of TAS-OSTBC with ABF, and IRS-assisted systems significantly outperform the conventional systems without the IRS technology. This makes the proposed IRS-assisted system an appealing solution for internet-of-things (IoT) networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.