2000 character limit reached
On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5 (2212.05549v2)
Published 11 Dec 2022 in math.NT
Abstract: Let $d(n)$ and $d{\ast}(n)$ be the numbers of divisors and the numbers of unitary divisors of the integer $n\geq1$. In this paper, we prove that [ \underset{n\in\mathcal{B}}{\underset{n\leq x}{\sum}}\frac{d(n)}{d{\ast}% (n)}=\frac{16\pi% %TCIMACRO{\U{b2}}% %BeginExpansion {{}2}% %EndExpansion }{123}\underset{p}{\prod}(1-\frac{1}{2p% %TCIMACRO{\U{b2}}% %BeginExpansion {{}2}% %EndExpansion }+\frac{1}{2p{3}})x+\mathcal{O}\left( x{\frac{\ln8}{\ln10}+\varepsilon }\right) ,~\left( x\geqslant1,~\varepsilon>0\right) , ] where $\mathcal{B}$ is the set which contains any integer that is not a multiple of $5,$ but some permutations of its digits is a multiple of $5.$