Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Adversarial Defense Against Black-box Attacks via Pixel Level and Feature Level Distribution Alignments (2212.05387v1)

Published 11 Dec 2022 in cs.CV

Abstract: Deep Neural Networks (DNNs) are vulnerable to the black-box adversarial attack that is highly transferable. This threat comes from the distribution gap between adversarial and clean samples in feature space of the target DNNs. In this paper, we use Deep Generative Networks (DGNs) with a novel training mechanism to eliminate the distribution gap. The trained DGNs align the distribution of adversarial samples with clean ones for the target DNNs by translating pixel values. Different from previous work, we propose a more effective pixel level training constraint to make this achievable, thus enhancing robustness on adversarial samples. Further, a class-aware feature-level constraint is formulated for integrated distribution alignment. Our approach is general and applicable to multiple tasks, including image classification, semantic segmentation, and object detection. We conduct extensive experiments on different datasets. Our strategy demonstrates its unique effectiveness and generality against black-box attacks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.