Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards High-Order Complementary Recommendation via Logical Reasoning Network (2212.04966v1)

Published 9 Dec 2022 in cs.LG

Abstract: Complementary recommendation gains increasing attention in e-commerce since it expedites the process of finding frequently-bought-with products for users in their shopping journey. Therefore, learning the product representation that can reflect this complementary relationship plays a central role in modern recommender systems. In this work, we propose a logical reasoning network, LOGIREC, to effectively learn embeddings of products as well as various transformations (projection, intersection, negation) between them. LOGIREC is capable of capturing the asymmetric complementary relationship between products and seamlessly extending to high-order recommendations where more comprehensive and meaningful complementary relationship is learned for a query set of products. Finally, we further propose a hybrid network that is jointly optimized for learning a more generic product representation. We demonstrate the effectiveness of our LOGIREC on multiple public real-world datasets in terms of various ranking-based metrics under both low-order and high-order recommendation scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Longfeng Wu (5 papers)
  2. Yao Zhou (72 papers)
  3. Dawei Zhou (53 papers)
Citations (6)