Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The R-algebra of Quasiknowledge and Convex Optimization (2212.04606v1)

Published 8 Dec 2022 in quant-ph and cs.LG

Abstract: This article develops a convex description of a classical or quantum learner's or agent's state of knowledge about its environment, presented as a convex subset of a commutative R-algebra. With caveats, this leads to a generalization of certain semidefinite programs in quantum information (such as those describing the universal query algorithm dual to the quantum adversary bound, related to optimal learning or control of the environment) to the classical and faulty-quantum setting, which would not be possible with a naive description via joint probability distributions over environment and internal memory. More philosophically, it also makes an interpretation of the set of reduced density matrices as "states of knowledge" of an observer of its environment, related to these techniques, more explicit. As another example, I describe and solve a formal differential equation of states of knowledge in that algebra, where an agent obtains experimental data in a Poissonian process, and its state of knowledge evolves as an exponential power series. However, this framework currently lacks impressive applications, and I post it in part to solicit feedback and collaboration on those. In particular, it may be possible to develop it into a new framework for the design of experiments, e.g. the problem of finding maximally informative questions to ask human labelers or the environment in machine-learning problems. The parts of the article not related to quantum information don't assume knowledge of it.

Summary

We haven't generated a summary for this paper yet.