Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Device identification using optimized digital footprints (2212.04354v1)

Published 4 Dec 2022 in cs.CR, cs.LG, and cs.NI

Abstract: The rapidly increasing number of internet of things (IoT) and non-IoT devices has imposed new security challenges to network administrators. Accurate device identification in the increasingly complex network structures is necessary. In this paper, a device fingerprinting (DFP) method has been proposed for device identification, based on digital footprints, which devices use for communication over a network. A subset of nine features have been selected from the network and transport layers of a single transmission control protocol/internet protocol packet based on attribute evaluators in Weka, to generate device-specific signatures. The method has been evaluated on two online datasets, and an experimental dataset, using different supervised ML algorithms. Results have shown that the method is able to distinguish device type with up to 100% precision using the random forest (RF) classifier, and classify individual devices with up to 95.7% precision. These results demonstrate the applicability of the proposed DFP method for device identification, in order to provide a more secure and robust network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (5)

Summary

We haven't generated a summary for this paper yet.