Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy Theory of Enriched Mackey Functors (2212.04276v2)

Published 8 Dec 2022 in math.AT, math.CT, and math.KT

Abstract: Mackey functors provide the coefficient systems for equivariant cohomology theories. More generally, enriched presheaf categories provide a classification and organization for many stable model categories of interest. Changing enrichments along $K$-theory multifunctors provides an important tool for constructing spectral Mackey functors from Mackey functors enriched in algebraic structures such as permutative categories. This work gives a detailed development of diagrams, presheaves, and Mackey functors enriched over closed multicategories. Change of enrichment, including the relevant compositionality, is treated with care. This framework is applied to the homotopy theory of enriched diagram and Mackey functor categories, including equivalences of homotopy theories induced by $K$-theory multifunctors. Particular applications of interest include diagrams and Mackey functors enriched in pointed multicategories, permutative categories, and symmetric spectra.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com