Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer learning for chemically accurate interatomic neural network potentials (2212.03916v2)

Published 7 Dec 2022 in physics.comp-ph and stat.ML

Abstract: Developing machine learning-based interatomic potentials from ab-initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning, in particular discriminative fine-tuning, for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab-initio data. Additionally, we show that fine-tuning with energy labels alone can suffice to obtain accurate atomic forces and run large-scale atomistic simulations, provided a well-designed fine-tuning data set. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Viktor Zaverkin (18 papers)
  2. David Holzmüller (18 papers)
  3. Luca Bonfirraro (1 paper)
  4. Johannes Kästner (48 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.