Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Offline Reinforcement Learning Help Natural Language Understanding? (2212.03864v1)

Published 15 Sep 2022 in cs.CL

Abstract: Pre-training has been a useful method for learning implicit transferable knowledge and it shows the benefit of offering complementary features across different modalities. Recent work mainly focuses on the modalities such as image and text, for example, studies show that visual features learned from images can help visual-grounded language understanding. In this paper, we consider investigating the potential connection between offline reinforcement learning (RL) and LLMing (LM). Intuitively, RL and LM are similar in predicting the next states based on the current and previous states, which rely on both local and long-range dependency across states. To validate such an assumption, we pre-trained different offline RL tasks using Transformer and then evaluate these models on various language-related tasks. Experimental results show that our RL pre-trained models can give close performance compared with the models using the LM training objective, showing that there exist common useful features across these two modalities. To further explore the potential relationship, we investigate some factors such as Markov property and the sequential nature of RL trajectory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ziqi Zhang (64 papers)
  2. Yile Wang (24 papers)
  3. Yue Zhang (618 papers)
  4. Donglin Wang (103 papers)