Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semisimple elements and the little Weyl group of real semisimple $Z_m$-graded Lie algebras (2212.03775v2)

Published 7 Dec 2022 in math.RT, math.DG, math.GR, and math.RA

Abstract: We consider the semisimple orbits of a Vinberg $\theta$-representation. First we take the complex numbers as base field. By a case by case analysis we show a technical result stating the equality of two sets of hyperplanes, one corresponding to the restricted roots of a Cartan subspace, the other corresponding to the complex reflections in the (little) Weyl group. The semisimple orbits have representatives in a finite number of sets that correspond to reflection subgroups of the (little) Weyl group. One of the consequences of our technical result is that the elements in a fixed such set all have the same stabilizer in the acting group. Secondly we study what happens when the base field is the real numbers. We look at Cartan subspaces and show that the real Cartan subspaces can be classified by the first Galois cohomology set of the normalizer of a fixed real Cartan subspace. In the real case the orbits can be classified using Galois cohomology. However, in order for that to work we need to know which orbits have a real representative. We show a theorem that characterizes the orbits of homogeneous semisimple elements that do have such a real representative. This closely follows and generalizes a theorem from \cite{bgl}.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com