Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collisional flavor instability in dense neutrino gases (2212.03750v2)

Published 7 Dec 2022 in hep-ph, astro-ph.HE, and nucl-th

Abstract: Charged-current neutrino processes such as $\nu_e + n \rightleftharpoons p + e-$ and $\bar\nu_e + p \rightleftharpoons n + e+$ destroy the flavor coherence among the weak-interaction states of a single neutrino and thus damp its flavor oscillation. In a dense neutrino gas such as that inside a core-collapse supernova or the black hole accretion disk formed in a compact binary merger, however, these "collision" processes can trigger large flavor conversion in cooperation with the strong neutrino-neutrino refraction. We show that there exist two types of collisional flavor instability in a homogeneous and isotropic neutrino gas which are identified by the dependence of their real frequencies on the neutrino density $n_\nu$. The instability transitions from one type to the other and exhibits a resonance-like behavior in the region where the net electron lepton number of the neutrino gas is negligible. In the transition region, the flavor instability grows exponentially at a rate $\propto n_\nu{1/2}$. We find that the neutrino gas in the black hole accretion disk is susceptible to the collision-induced flavor conversion where the neutrino densities are the highest. As a result, large amounts of heavy-lepton flavor neutrinos may be produced through flavor conversion, which can potentially have important ramifications in the subsequent evolution of the remnant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307, 924 (1988).
  2. J. T. Pantaleone, Dirac neutrinos in dense matter, Phys. Rev. D 46, 510 (1992).
  3. S. Samuel, Neutrino oscillations in dense neutrino gases, Phys. Rev. D 48, 1462 (1993).
  4. S. Pastor and G. Raffelt, Flavor oscillations in the supernova hot bubble region: Nonlinear effects of neutrino background, Phys. Rev. Lett. 89, 191101 (2002), arXiv:astro-ph/0207281 .
  5. H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective Neutrino Oscillations, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010), arXiv:1001.2799 [hep-ph] .
  6. R. F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova, Phys. Rev. Lett. 116, 081101 (2016), arXiv:1509.03323 [astro-ph.HE] .
  7. I. Tamborra and S. Shalgar, New Developments in Flavor Evolution of a Dense Neutrino Gas, Ann. Rev. Nucl. Part. Sci. 71, 165 (2021), arXiv:2011.01948 [astro-ph.HE] .
  8. M.-R. Wu and I. Tamborra, Fast neutrino conversions: Ubiquitous in compact binary merger remnants, Phys. Rev. D 95, 103007 (2017), arXiv:1701.06580 [astro-ph.HE] .
  9. L. Johns, Collisional flavor instabilities of supernova neutrinos, arXiv:2104.11369 [hep-ph] (2021).
  10. Y.-C. Lin and H. Duan, Collision-induced flavor instability in dense neutrino gases with energy-dependent scattering, arXiv:2210.09218 [hep-ph] (2022).
  11. G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406, 423 (1993).
  12. I. Izaguirre, G. Raffelt, and I. Tamborra, Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion-Relation Approach, Phys. Rev. Lett. 118, 021101 (2017), arXiv:1610.01612 [hep-ph] .
  13. B. Dasgupta, Collective Neutrino Flavor Instability Requires a Crossing, Phys. Rev. Lett. 128, 081102 (2022), arXiv:2110.00192 [hep-ph] .
  14. H. Duan, G. M. Fuller, and Y.-Z. Qian, Symmetries in collective neutrino oscillations, J. Phys. G 36, 105003 (2009), arXiv:0808.2046 [astro-ph] .
  15. A. Banerjee, A. Dighe, and G. Raffelt, Linearized flavor-stability analysis of dense neutrino streams, Phys. Rev. D 84, 053013 (2011), arXiv:1107.2308 [hep-ph] .
  16. H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective neutrino flavor transformation in supernovae, Phys. Rev. D 74, 123004 (2006b), arXiv:astro-ph/0511275 .
  17. I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping, arXiv:2209.11235 [hep-ph] (2022).
  18. J. Liu, M. Zaizen, and S. Yamada, Systematic study of the resonancelike structure in the collisional flavor instability of neutrinos, Phys. Rev. D 107, 123011 (2023), arXiv:2302.06263 [hep-ph] .
  19. S. W. Bruenn, Stellar core collapse: Numerical model and infall epoch, Astrophys. J. Suppl. 58, 771 (1985).
  20. L. Johns and Z. Xiong, Collisional instabilities of neutrinos and their interplay with fast flavor conversion in compact objects, Phys. Rev. D 106, 103029 (2022).
Citations (27)

Summary

We haven't generated a summary for this paper yet.