Collisional flavor instability in dense neutrino gases (2212.03750v2)
Abstract: Charged-current neutrino processes such as $\nu_e + n \rightleftharpoons p + e-$ and $\bar\nu_e + p \rightleftharpoons n + e+$ destroy the flavor coherence among the weak-interaction states of a single neutrino and thus damp its flavor oscillation. In a dense neutrino gas such as that inside a core-collapse supernova or the black hole accretion disk formed in a compact binary merger, however, these "collision" processes can trigger large flavor conversion in cooperation with the strong neutrino-neutrino refraction. We show that there exist two types of collisional flavor instability in a homogeneous and isotropic neutrino gas which are identified by the dependence of their real frequencies on the neutrino density $n_\nu$. The instability transitions from one type to the other and exhibits a resonance-like behavior in the region where the net electron lepton number of the neutrino gas is negligible. In the transition region, the flavor instability grows exponentially at a rate $\propto n_\nu{1/2}$. We find that the neutrino gas in the black hole accretion disk is susceptible to the collision-induced flavor conversion where the neutrino densities are the highest. As a result, large amounts of heavy-lepton flavor neutrinos may be produced through flavor conversion, which can potentially have important ramifications in the subsequent evolution of the remnant.
- D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307, 924 (1988).
- J. T. Pantaleone, Dirac neutrinos in dense matter, Phys. Rev. D 46, 510 (1992).
- S. Samuel, Neutrino oscillations in dense neutrino gases, Phys. Rev. D 48, 1462 (1993).
- S. Pastor and G. Raffelt, Flavor oscillations in the supernova hot bubble region: Nonlinear effects of neutrino background, Phys. Rev. Lett. 89, 191101 (2002), arXiv:astro-ph/0207281 .
- H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective Neutrino Oscillations, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010), arXiv:1001.2799 [hep-ph] .
- R. F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova, Phys. Rev. Lett. 116, 081101 (2016), arXiv:1509.03323 [astro-ph.HE] .
- I. Tamborra and S. Shalgar, New Developments in Flavor Evolution of a Dense Neutrino Gas, Ann. Rev. Nucl. Part. Sci. 71, 165 (2021), arXiv:2011.01948 [astro-ph.HE] .
- M.-R. Wu and I. Tamborra, Fast neutrino conversions: Ubiquitous in compact binary merger remnants, Phys. Rev. D 95, 103007 (2017), arXiv:1701.06580 [astro-ph.HE] .
- L. Johns, Collisional flavor instabilities of supernova neutrinos, arXiv:2104.11369 [hep-ph] (2021).
- Y.-C. Lin and H. Duan, Collision-induced flavor instability in dense neutrino gases with energy-dependent scattering, arXiv:2210.09218 [hep-ph] (2022).
- G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406, 423 (1993).
- I. Izaguirre, G. Raffelt, and I. Tamborra, Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion-Relation Approach, Phys. Rev. Lett. 118, 021101 (2017), arXiv:1610.01612 [hep-ph] .
- B. Dasgupta, Collective Neutrino Flavor Instability Requires a Crossing, Phys. Rev. Lett. 128, 081102 (2022), arXiv:2110.00192 [hep-ph] .
- H. Duan, G. M. Fuller, and Y.-Z. Qian, Symmetries in collective neutrino oscillations, J. Phys. G 36, 105003 (2009), arXiv:0808.2046 [astro-ph] .
- A. Banerjee, A. Dighe, and G. Raffelt, Linearized flavor-stability analysis of dense neutrino streams, Phys. Rev. D 84, 053013 (2011), arXiv:1107.2308 [hep-ph] .
- H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective neutrino flavor transformation in supernovae, Phys. Rev. D 74, 123004 (2006b), arXiv:astro-ph/0511275 .
- I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping, arXiv:2209.11235 [hep-ph] (2022).
- J. Liu, M. Zaizen, and S. Yamada, Systematic study of the resonancelike structure in the collisional flavor instability of neutrinos, Phys. Rev. D 107, 123011 (2023), arXiv:2302.06263 [hep-ph] .
- S. W. Bruenn, Stellar core collapse: Numerical model and infall epoch, Astrophys. J. Suppl. 58, 771 (1985).
- L. Johns and Z. Xiong, Collisional instabilities of neutrinos and their interplay with fast flavor conversion in compact objects, Phys. Rev. D 106, 103029 (2022).