Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Multi-Objective A* with Partial Expansion (2212.03712v2)

Published 6 Dec 2022 in math.OC and cs.AI

Abstract: The Multi-Objective Shortest Path Problem (MO-SPP), typically posed on a graph, determines a set of paths from a start vertex to a destination vertex while optimizing multiple objectives. In general, there does not exist a single solution path that can simultaneously optimize all the objectives and the problem thus seeks to find a set of so-called Pareto-optimal solutions. To address this problem, several Multi-Objective A* (MOA*) algorithms were recently developed to quickly compute solutions with quality guarantees. However, these MOA* algorithms often suffer from high memory usage, especially when the branching factor (i.e. the number of neighbors of any vertex) of the graph is large. This work thus aims at reducing the high memory consumption of MOA* with little increase in the runtime. By generalizing and unifying several single- and multi-objective search algorithms, we develop the Runtime and Memory Efficient MOA* (RME-MOA*) approach, which can balance between runtime and memory efficiency by tuning two user-defined hyper-parameters.

Summary

We haven't generated a summary for this paper yet.