Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An upper bound on the number of frequency hypercubes (2212.03694v3)

Published 7 Dec 2022 in math.CO and cs.DM

Abstract: A frequency $n$-cube $Fn(q;l_0,...,l_{m-1})$ is an $n$-dimensional $q$-by-...-by-$q$ array, where $q = l_0+...+l_{m-1}$, filled by numbers $0,...,m-1$ with the property that each line contains exactly $l_i$ cells with symbol $i$, $i = 0,...,m-1$ (a line consists of $q$ cells of the array differing in one coordinate). The trivial upper bound on the number of frequency $n$-cubes is $m{(q-1){n}}$. We improve that lower bound for $n>2$, replacing $q-1$ by a smaller value, by constructing a testing set of size $s{n}$, $s<q-1$, for frequency $n$-cubes (a testing sets is a collection of cells of an array the values in which uniquely determine the array with given parameters). We also construct new testing sets for generalized frequency $n$-cubes, which are essentially correlation-immune functions in $n$ $q$-valued arguments; the cardinalities of new testing sets are smaller than for testing sets known before. Keywords: frequency hypercube, correlation-immune function, latin hypercube, testing set.

Summary

We haven't generated a summary for this paper yet.