Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum advantage in temporally flat measurement-based quantum computation (2212.03668v4)

Published 7 Dec 2022 in quant-ph

Abstract: Several classes of quantum circuits have been shown to provide a quantum computational advantage under certain assumptions. The study of ever more restricted classes of quantum circuits capable of quantum advantage is motivated by possible simplifications in experimental demonstrations. In this paper we study the efficiency of measurement-based quantum computation with a completely flat temporal ordering of measurements. We propose new constructions for the deterministic computation of arbitrary Boolean functions, drawing on correlations present in multi-qubit Greenberger, Horne, and Zeilinger (GHZ) states. We characterize the necessary measurement complexity using the Clifford hierarchy, and also generally decrease the number of qubits needed with respect to previous constructions. In particular, we identify a family of Boolean functions for which deterministic evaluation using non-adaptive MBQC is possible, featuring quantum advantage in width and number of gates with respect to classical circuits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (122)
  1. “The acrobatics of bqp” (2021). url: https://doi.org/10.48550/arXiv.2111.10409.
  2. “On the role of entanglement in quantum-computational speed-up”. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459, 2011–2032 (2003). url: https://doi.org/10.1098/rspa.2002.1097.
  3. “Contextuality supplies the ‘magic’ for quantum computation”. Nature 510, 351–355 (2014). url: https://doi.org/10.1038/nature13460.
  4. “Contextuality as a resource for models of quantum computation with qubits”. Physical review letters 119, 120505 (2017). url: https://link.aps.org/doi/10.1103/PhysRevLett.119.120505.
  5. Ernesto F Galvão. “Discrete Wigner functions and quantum computational speedup”. Phys. Rev. A 71, 042302 (2005). url: https://link.aps.org/doi/10.1103/PhysRevA.71.042302.
  6. A Mari and J Eisert. “Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient”. Phys. Rev. Lett. 109, 230503 (2012). url: https://link.aps.org/doi/10.1103/PhysRevLett.109.230503.
  7. Lov K Grover. “The advantages of superposition”. Science 280, 228 (1998). url: https://www.science.org/doi/10.1126/science.280.5361.228.
  8. “A one-way quantum computer”. Phys. Rev. Lett. 86, 5188–5191 (2001). url: https://link.aps.org/doi/10.1103/PhysRevLett.86.5188.
  9. “Universal resources for measurement-based quantum computation”. Physical review letters 97, 150504 (2006). url: https://link.aps.org/doi/10.1103/PhysRevLett.97.150504.
  10. “Computational power of correlations”. Phys. Rev. Lett. 102, 050502 (2009).
  11. “Determinism in the one-way model”. Phys. Rev. A 74, 052310 (2006).
  12. “Generalized flow and determinism in measurement-based quantum computation”. New Journal of Physics 9, 250 (2007).
  13. “Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations”. Phys. Rev. Lett. 117, 080501 (2016).
  14. “Measurement-based classical computation”. Physical review letters 112, 140505 (2014). url: https://link.aps.org/doi/10.1103/PhysRevLett.112.140505.
  15. “Achieving quantum supremacy with sparse and noisy commuting quantum computations”. Quantum 1, 8 (2017). url: https://doi.org/10.22331/q-2017-04-25-8.
  16. “Quantum advantage from energy measurements of many-body quantum systems”. Quantum 5, 465 (2021).
  17. “Verifying commuting quantum computations via fidelity estimation of weighted graph states”. New Journal of Physics 21, 93060 (2019).
  18. “Architectures for Quantum Simulation Showing a Quantum Speedup”. Phys. Rev. X 8, 021010 (2018).
  19. “Quantum supremacy in constant-time measurement-based computation: A unified architecture for sampling and verification”. Phys. Rev. A 96, 062320 (2017).
  20. “Non-adaptive measurement-based quantum computation and multi-party Bell inequalities”. New Journal of Physics 13, 23014 (2011).
  21. Ryuhei Mori. “Periodic Fourier representation of Boolean functions”. Quantum Info. Comput. 19, 392–412 (2019). url: https://dl.acm.org/doi/abs/10.5555/3370251.3370253.
  22. “Hierarchies of resources for measurement-based quantum computation” (2022). url: https://arxiv.org/abs/2203.09965.
  23. “The power of qutrits for non-adaptive measurement-based quantum computing” (2022). url: https://arxiv.org/abs/2203.12411.
  24. “Bell-Type Inequalities to Detect True n𝑛\mathit{n}italic_n-Body Nonseparability”. Phys. Rev. Lett. 88, 170405 (2002).
  25. “Bell nonlocality”. Rev. Mod. Phys. 86, 419–478 (2014).
  26. Dmitrijs Kravčenko. “Quantum Games, Quantum States, Their Properties and Applications”. PhD thesis. Latvijas Universitāte.  (2013).
  27. William Slofstra. “Lower bounds on the entanglement needed to play XOR non-local games”. Journal of Mathematical Physics 52, 102202 (2011).
  28. “Advantage of quantum strategies in random symmetric xor games”. In Antonín Kučera, Thomas A. Henzinger, Jaroslav Nešetřil, Tomáš Vojnar, and David Antoš, editors, Mathematical and Engineering Methods in Computer Science. Volume 7721 of Lecture Notes in Computer Science, pages 57–68. Berlin, Heidelberg (2013). Springer Berlin Heidelberg. url: https://doi.org/10.1007/978-3-642-36046-6$_$7.
  29. “Provable advantage for quantum strategies in random symmetric xor games” (2013). url: 10.4230/LIPIcs.TQC.2013.146.
  30. “Implications of communication complexity in multipartite systems”. Phys. Rev. A 77, 032120 (2008).
  31. “Information causality as a physical principle”. Nature 461, 1101–1104 (2009).
  32. “Quantum nonlocality as an axiom”. Foundations of Physics 24, 379–385 (1994).
  33. “Nonlocal correlations as an information-theoretic resource”. Phys. Rev. A 71, 022101 (2005).
  34. Alexander A Razborov. “Quantum communication complexity of symmetric predicates”. Izvestiya: Mathematics 67, 145 (2003). url: https://iopscience.iop.org/article/10.1070/IM2003v067n01ABEH000422.
  35. “Communication complexities of symmetric XOR functions”. Quantum Information and Computation 9, 255–263 (2009). url: https://dl.acm.org/doi/abs/10.5555/2011781.2011786.
  36. Pierre Botteron. “NonLocal Boxes and Communication Complexity”. Master’s thesis. Université Paul Sabatier Toulouse III.  (2022).
  37. “Generalized nonlocality criteria under the correlation symmetry”. Physical Review A 98, 022116 (2018). url: https://doi.org/10.1103/PhysRevA.98.022116.
  38. “Contextuality as a resource for measurement-based quantum computation beyond qubits”. New Journal of Physics 20, 103011 (2018).
  39. “Quantum advantage with shallow circuits”. Science 362, 308–311 (2018).
  40. “Interactive Shallow Clifford Circuits: Quantum Advantage against NC¹ and Beyond”. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. Pages 875–888. STOC 2020New York, NY, USA (2020). Association for Computing Machinery.
  41. “Single-qubit gate teleportation provides a quantum advantage” (2022). arXiv:2209.14158.
  42. François Le Gall. “Average-Case Quantum Advantage with Shallow Circuits”. In Amir Shpilka, editor, 34th Computational Complexity Conference (CCC 2019). Volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1—-21:20. Dagstuhl, Germany (2019). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  43. “Trading locality for time: certifiable randomness from low-depth circuits”. Communications in mathematical physics 382, 49–86 (2021). url: https://doi.org/10.1007/s00220-021-03963-w.
  44. “Quantum advantage with noisy shallow circuits”. Nature Physics 16, 1040–1045 (2020).
  45. “Quantum advantage with shallow circuits under arbitrary corruption” (2021). url: https://arxiv.org/abs/2105.00603.
  46. “Exponential Separation between Shallow Quantum Circuits and Unbounded Fan-in Shallow Classical Circuits”. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Pages 515–526. STOC 2019New York, NY, USA (2019). Association for Computing Machinery.
  47. Natalie Parham. “On the Power and Limitations of Shallow Quantum Circuits”. Master’s thesis. University of Waterloo.  (2022).
  48. “Quantum advantage for computations with limited space”. Nature Physics 17, 894–897 (2021).
  49. “On the computational power of probabilistic and quantum branching program”. Information and Computation 203, 145–162 (2005). url: https://doi.org/10.1016/j.ic.2005.04.003.
  50. Tzu-Chieh Wei. “Measurement-based quantum computation” (2021). url: https://arxiv.org/abs/2109.10111.
  51. D Shepherd and M. J. Bremner. “Temporally unstructured quantum computation”. Proceedings of the Royal Society of London Series A 465, 1413–1439 (2009). arXiv:0809.0847.
  52. “Going Beyond Bell’s Theorem”. In Menas Kafatos, editor, Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Pages 69–72. Dordrecht (1989). Springer Netherlands.
  53. “Efficient Quantum Algorithms for GHZ and W States, and Implementation on the IBM Quantum Computer”. Advanced Quantum Technologies 2, 1900015 (2019).
  54. R Werner and M Wolf. “All-multipartite Bell-correlation inequalities for two dichotomic observables per site”. Physical Review A 64, 032112 (2001). url: https://link.aps.org/doi/10.1103/PhysRevA.64.032112.
  55. Ryan O’Donnell. “Analysis of boolean functions”. Cambridge University Press.  (2014). url: http://www.cs.cmu.edu/~./odonnell/papers/Analysis-of-Boolean-Functions-by-Ryan-ODonnell.pdf.
  56. “Parity Decision Tree Complexity is Greater Than Granularity” (2018). url: https://arxiv.org/abs/1810.08668.
  57. A Canteaut and M Videau. “Symmetric Boolean functions”. IEEE Transactions on Information Theory 51, 2791–2811 (2005).
  58. Larry J Stockmeyer. “On the combinational complexity of certain symmetric Boolean functions”. Mathematical systems theory 10, 323–336 (1976).
  59. “Algebraic Properties of Symmetric and Partially Symmetric Boolean Functions”. IEEE Transactions on Electronic Computers EC-12, 244–251 (1963).
  60. An Braeken and Bart Preneel. “On the algebraic immunity of symmetric boolean functions”. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam Venkatesan, editors, Progress in Cryptology - INDOCRYPT 2005. Volume 3797 of Lecture Notes in Computer Science, pages 35–48. Berlin, Heidelberg (2005). Springer Berlin Heidelberg. url: https://doi.org/10.1007/11596219$_$4.
  61. “Complexity measures and decision tree complexity: a survey”. Theoretical Computer Science 288, 21–43 (2002).
  62. “A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 818–830 (2013).
  63. “Synthesis of quantum-logic circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000–1010 (2006).
  64. “Efficient Decomposition of Quantum Gates”. Phys. Rev. Lett. 92, 177902 (2004).
  65. “Semi-Clifford operations, structure of 𝒞ksubscript𝒞𝑘\mathcal{C}_{k}caligraphic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT hierarchy, and gate complexity for fault-tolerant quantum computation”. Phys. Rev. A 77, 042313 (2008).
  66. “Cost-optimal single-qubit gate synthesis in the Clifford hierarchy”. Quantum 5, 396 (2021).
  67. Nadish de Silva. “Efficient quantum gate teleportation in higher dimensions”. Proceedings of the Royal Society A 477, 20200865 (2021). url: https://doi.org/10.1098/rspa.2020.0865.
  68. “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations”. Nature 402, 390–393 (1999). url: https://doi.org/10.1038/46503.
  69. Daniel Gottesman. “The heisenberg representation of quantum computers” (1998). url: https://arxiv.org/abs/quant-ph/9807006.
  70. “Fast and Efficient Exact Synthesis of Single-Qubit Unitaries Generated by Clifford and T Gates”. Quantum Info. Comput. 13, 607–630 (2013). url: https://dl.acm.org/doi/abs/10.5555/2535649.2535653.
  71. “Testing the structure of multipartite entanglement with Bell inequalities.”. Physical review letters 108 11, 110501 (2012). url: https://doi.org/10.1103/PhysRevLett.108.110501.
  72. “Entangled Games Are Hard to Approximate”. SIAM Journal on Computing 40, 848–877 (2011).
  73. “Multivariate trace estimation in constant quantum depth” (2022). arXiv:2206.15405.
  74. Peter Selinger. “Efficient Clifford+T Approximation of Single-Qubit Operators”. Quantum Info. Comput. 15, 159–180 (2015). url: https://dl.acm.org/doi/abs/10.5555/2685188.2685198.
  75. “Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits”. IEEE Transactions on Computers 65, 161–172 (2016).
  76. Neil J Ross. “Optimal Ancilla-Free CLIFFORD+V Approximation of Z-Rotations”. Quantum Info. Comput. 15, 932–950 (2015). url: https://dl.acm.org/doi/abs/10.5555/2871350.2871354.
  77. “Quantum Complexity Theory”. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing. Pages 11–20. STOC ’93New York, NY, USA (1993). Association for Computing Machinery.
  78. “Efficient synthesis of probabilistic quantum circuits with fallback”. Phys. Rev. A 91, 052317 (2015).
  79. “Efficient Synthesis of Universal Repeat-Until-Success Quantum Circuits”. Phys. Rev. Lett. 114, 080502 (2015).
  80. Ingo Wegener. “The Complexity of Boolean Functions”. John Wiley &\&& Sons, Inc. USA (1987). url: https://dl.acm.org/doi/abs/10.5555/35517.
  81. Heribert Vollmer. “Introduction to Circuit Complexity: A Uniform Approach”. Springer Publishing Company, Incorporated.  (2010). 1st edition. url: https://link.springer.com/book/10.1007/978-3-662-03927-4.
  82. R Smolensky. “Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity”. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. Pages 77–82. STOC ’87New York, NY, USA (1987). Association for Computing Machinery.
  83. Jaikumar Radhakrishnan. “Better bounds for threshold formulas”. In [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science. Pages 314–323. IEEE Computer Society (1991).
  84. “Ω⁢(N⁢log⁡n)Ω𝑁𝑛\Omega(N\log n)roman_Ω ( italic_N roman_log italic_n ) Lower Bounds on Length of Boolean Formulas”. SIAM J. Comput. 11, 416–427 (1982).
  85. “Computational Complexity: A Modern Approach”. Cambridge University Press. USA (2009). 1st edition. url: https://dl.acm.org/doi/abs/10.5555/1540612.
  86. Scott Aaronson. “How Much Structure Is Needed for Huge Quantum Speedups?” (2022). arXiv:2209.06930.
  87. David A Barrington. “Bounded-width polynomial-size branching programs recognize exactly those languages in NC1”. Journal of Computer and System Sciences 38, 150–164 (1989).
  88. “The Computational Complexity of Linear Optics”. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing. Pages 333–342. STOC ’11New York, NY, USA (2011). Association for Computing Machinery.
  89. Peter W Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”. SIAM Review 41, 303–332 (1999).
  90. Daniel R Simon. “On the Power of Quantum Computation”. SIAM Journal on Computing 26, 1474–1483 (1997).
  91. “Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial”. Phys. Rev. Lett. 96, 250401 (2006).
  92. Wim van Dam. “Implausible consequences of superstrong nonlocality”. Natural Computing 12, 9–12 (2013).
  93. “T-Count Optimization and Reed–Muller Codes”. IEEE Transactions on Information Theory 65, 4771–4784 (2019).
  94. “Algebraic complexity theory”. Volume 315. Springer Science & Business Media.  (2013). url: https://dl.acm.org/doi/abs/10.5555/1965416.
  95. “Optimal hamiltonian simulation by quantum signal processing”. Phys. Rev. Lett. 118, 010501 (2017).
  96. Jeongwan Haah. “Product Decomposition of Periodic Functions in Quantum Signal Processing”. Quantum 3, 190 (2019).
  97. “Degree vs. Approximate Degree and Quantum Implications of Huang’s Sensitivity Theorem”. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. Pages 1330–1342. STOC 2021New York, NY, USA (2021). Association for Computing Machinery.
  98. Hao Huang. “Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture”. Annals of Mathematics 190, 949–955 (2019).
  99. “Separations in Query Complexity Based on Pointer Functions”. J. ACM64 (2017).
  100. “Quantum Circuits with Unbounded Fan-out” (2002). arXiv:quant-ph/0208043.
  101. “Quantum computational advantage attested by nonlocal games with the cyclic cluster state”. Phys. Rev. Research 4, 033068 (2022).
  102. “Classification of measurement-based quantum wire in stabilizer PEPS” (2022). arXiv:2207.00616.
  103. Abhishek Anand. “On the power of interleaved low-depth quantum and classical circuits”. Master’s thesis. University of Waterloo.  (2022).
  104. John Preskill. “Quantum Computing in the NISQ era and beyond”. Quantum 2, 79 (2018).
  105. “Correlations for computation and computation for correlations”. npj Quantum Information 7, 1–8 (2021). url: https://doi.org/10.1038/s41534-020-00354-2.
  106. “Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states”. Quantum Information Processing 18, 218 (2019).
  107. “Testing scalable bell inequalities for quantum graph states on ibm quantum devices”. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12, 638–647 (2022).
  108. “Scalable bell inequalities for qubit graph states and robust self-testing”. Phys. Rev. Lett. 124, 020402 (2020).
  109. “Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences”. Phys. Rev. A 101, 032343 (2020).
  110. “Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q 53-qubit system”. Quantum Engineering 2, e45 (2020).
  111. “Playing Quantum Nonlocal Games with Six Noisy Qubits on the Cloud”. Advanced Quantum Technologies 5, 2100081 (2022).
  112. “Quantum-Enhanced Secure Delegated Classical Computing”. Quantum Info. Comput. 16, 61–86 (2016). url: https://dl.acm.org/doi/abs/10.5555/3179320.3179325.
  113. “Enhanced delegated computing using coherence”. Phys. Rev. A 93, 032339 (2016).
  114. “Classical multiparty computation using quantum resources”. Physical Review A 96, 062317 (2017).
  115. “Walsh-hadamard transform”. In Orthogonal transforms for digital signal processing. Pages 99–152. Springer (1975).
  116. “Quantum Computation and Quantum Information: 10th Anniversary Edition”. Cambridge University Press.  (2010).
  117. “Krawtchouk polynomials and krawtchouk matrices”. Pages 115–141. Recent Advances in Applied Probability. Springer US. Boston, MA (2005).
  118. “Krawtchouk transforms and convolutions”. Bulletin of Mathematical SciencesPages 1–19 (2018). url: https://doi.org/10.1007/s13373-018-0132-2.
  119. “Quantum interference enables constant-time quantum information processing”. Science advances 5, eaau9674 (2019). url: https://www.science.org/doi/full/10.1126/sciadv.aau9674.
  120. “Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)”. International Journal of Pure and Applied Mathematics55 (2009). url: https://ijpam.eu/contents/2009-55-1/7/index.html.
  121. “Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix”. SIAM Journal on Computing 8, 499–507 (1979).
  122. “A refined laser method and faster matrix multiplication”. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). Pages 522–539. SIAM (2021). url: https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.32.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com