Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KATSum: Knowledge-aware Abstractive Text Summarization (2212.03371v1)

Published 6 Dec 2022 in cs.CL and cs.AI

Abstract: Text Summarization is recognised as one of the NLP downstream tasks and it has been extensively investigated in recent years. It can assist people with perceiving the information rapidly from the Internet, including news articles, social posts, videos, etc. Most existing research works attempt to develop summarization models to produce a better output. However, advent limitations of most existing models emerge, including unfaithfulness and factual errors. In this paper, we propose a novel model, named as Knowledge-aware Abstractive Text Summarization, which leverages the advantages offered by Knowledge Graph to enhance the standard Seq2Seq model. On top of that, the Knowledge Graph triplets are extracted from the source text and utilised to provide keywords with relational information, producing coherent and factually errorless summaries. We conduct extensive experiments by using real-world data sets. The results reveal that the proposed framework can effectively utilise the information from Knowledge Graph and significantly reduce the factual errors in the summary.

Citations (2)

Summary

We haven't generated a summary for this paper yet.