Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Emotional Paraphrasing along Emotion Gradients (2212.03297v1)

Published 30 Oct 2022 in cs.CL and cs.LG

Abstract: Paraphrase generation, a.k.a. paraphrasing, is a common and important task in natural language processing. Emotional paraphrasing, which changes the emotion embodied in a piece of text while preserving its meaning, has many potential applications, e.g., moderating online dialogues and preventing cyberbullying. We introduce a new task of fine-grained emotional paraphrasing along emotion gradients, that is, altering the emotional intensities of the paraphrases in fine grain following smooth variations in affective dimensions while preserving the meanings of the originals. We propose a framework for addressing this task by fine-tuning text-to-text Transformers through multi-task training. We enhance several widely used paraphrasing corpus by annotating the input and target texts with their fine-grained emotion labels. With these labels, fine-tuning text-to-text Transformers on these corpus entails multi-task training. Evaluations of the fine-tuned Transformers on separate test sets show that including fine-grained emotion labels in the paraphrase task significantly improve the chance of obtaining high-quality paraphrases of the desired emotions, i.e., more than doubling the number of exact matches of desired emotions while achieving consistently better scores in paraphrase metrics such as BLEU, ROGUE, and METEOR.

Summary

We haven't generated a summary for this paper yet.