Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Size of Chromatic Delaunay Mosaics (2212.03121v1)

Published 6 Dec 2022 in math.CO and cs.CG

Abstract: Given a locally finite set $A \subseteq \mathbb{R}d$ and a coloring $\chi \colon A \to {0,1,\ldots,s}$, we introduce the chromatic Delaunay mosaic of $\chi$, which is a Delaunay mosaic in $\mathbb{R}{s+d}$ that represents how points of different colors mingle. Our main results are bounds on the size of the chromatic Delaunay mosaic, in which we assume that $d$ and $s$ are constants. For example, if $A$ is finite with $n = #{A}$, and the coloring is random, then the chromatic Delaunay mosaic has $O(n{\lceil{d/2}\rceil})$ cells in expectation. In contrast, for Delone sets and Poisson point processes in $\mathbb{R}d$, the expected number of cells within a closed ball is only a constant times the number of points in this ball. Furthermore, in $\mathbb{R}2$ all colorings of a dense set of $n$ points have chromatic Delaunay mosaics of size $O(n)$. This encourages the use of chromatic Delaunay mosaics in applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com