Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on the Efficacy of Deep Active Learning for Image Classification (2212.03088v1)

Published 30 Nov 2022 in cs.CV and cs.AI

Abstract: Deep Active Learning (DAL) has been advocated as a promising method to reduce labeling costs in supervised learning. However, existing evaluations of DAL methods are based on different settings, and their results are controversial. To tackle this issue, this paper comprehensively evaluates 19 existing DAL methods in a uniform setting, including traditional fully-\underline{s}upervised \underline{a}ctive \underline{l}earning (SAL) strategies and emerging \underline{s}emi-\underline{s}upervised \underline{a}ctive \underline{l}earning (SSAL) techniques. We have several non-trivial findings. First, most SAL methods cannot achieve higher accuracy than random selection. Second, semi-supervised training brings significant performance improvement compared to pure SAL methods. Third, performing data selection in the SSAL setting can achieve a significant and consistent performance improvement, especially with abundant unlabeled data. Our findings produce the following guidance for practitioners: one should (i) apply SSAL early and (ii) collect more unlabeled data whenever possible, for better model performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yu Li (378 papers)
  2. Muxi Chen (7 papers)
  3. Yannan Liu (14 papers)
  4. Daojing He (14 papers)
  5. Qiang Xu (129 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.