Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dataset vs Reality: Understanding Model Performance from the Perspective of Information Need (2212.02726v2)

Published 6 Dec 2022 in cs.IR

Abstract: Deep learning technologies have brought us many models that outperform human beings on a few benchmarks. An interesting question is: can these models well solve real-world problems with similar settings (e.g., identical input/output) to the benchmark datasets? We argue that a model is trained to answer the same information need for which the training dataset is created. Although some datasets may share high structural similarities, e.g., question-answer pairs for the question answering (QA) task and image-caption pairs for the image captioning (IC) task, they may represent different research tasks aiming for answering different information needs. To support our argument, we use the QA task and IC task as two case studies and compare their widely used benchmark datasets. From the perspective of information need in the context of information retrieval, we show the differences in the dataset creation processes, and the differences in morphosyntactic properties between datasets. The differences in these datasets can be attributed to the different information needs of the specific research tasks. We encourage all researchers to consider the information need the perspective of a research task before utilizing a dataset to train a model. Likewise, while creating a dataset, researchers may also incorporate the information need perspective as a factor to determine the degree to which the dataset accurately reflects the research task they intend to tackle.

Citations (4)

Summary

We haven't generated a summary for this paper yet.