Rethinking Backdoor Data Poisoning Attacks in the Context of Semi-Supervised Learning
Abstract: Semi-supervised learning methods can train high-accuracy machine learning models with a fraction of the labeled training samples required for traditional supervised learning. Such methods do not typically involve close review of the unlabeled training samples, making them tempting targets for data poisoning attacks. In this paper we investigate the vulnerabilities of semi-supervised learning methods to backdoor data poisoning attacks on the unlabeled samples. We show that simple poisoning attacks that influence the distribution of the poisoned samples' predicted labels are highly effective - achieving an average attack success rate as high as 96.9%. We introduce a generalized attack framework targeting semi-supervised learning methods to better understand and exploit their limitations and to motivate future defense strategies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.