Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Trade-off between Over-smoothing and Over-squashing in Deep Graph Neural Networks (2212.02374v2)

Published 5 Dec 2022 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have succeeded in various computer science applications, yet deep GNNs underperform their shallow counterparts despite deep learning's success in other domains. Over-smoothing and over-squashing are key challenges when stacking graph convolutional layers, hindering deep representation learning and information propagation from distant nodes. Our work reveals that over-smoothing and over-squashing are intrinsically related to the spectral gap of the graph Laplacian, resulting in an inevitable trade-off between these two issues, as they cannot be alleviated simultaneously. To achieve a suitable compromise, we propose adding and removing edges as a viable approach. We introduce the Stochastic Jost and Liu Curvature Rewiring (SJLR) algorithm, which is computationally efficient and preserves fundamental properties compared to previous curvature-based methods. Unlike existing approaches, SJLR performs edge addition and removal during GNN training while maintaining the graph unchanged during testing. Comprehensive comparisons demonstrate SJLR's competitive performance in addressing over-smoothing and over-squashing.

Citations (30)

Summary

We haven't generated a summary for this paper yet.