Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VEM approximation for the Stokes eigenvalue problem: a priori and a posteriori error analysis (2212.01961v1)

Published 5 Dec 2022 in math.NA and cs.NA

Abstract: The present paper proposes an inf-sup stable divergence free virtual element method and associated a priori, and a posteriori error analysis to approximate the eigenvalues and eigenfunctions of the Stokes spectral problem in one shot. For the a priori analysis, we take advantage of the compactness of the solution operator to prove convergence of the eigenfunctions and double order convergence of eigenvalues. Additionally we also propose an a posteriori estimator of residual type, which we prove is reliable and efficient, in order to perform adaptive refinements that allow to recover the optimal order of convergence for non smooth eigenfunctions. A set of representative numerical examples investigates such theoretical results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.