Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pair-Based Joint Encoding with Relational Graph Convolutional Networks for Emotion-Cause Pair Extraction (2212.01844v1)

Published 4 Dec 2022 in cs.CL and cs.AI

Abstract: Emotion-cause pair extraction (ECPE) aims to extract emotion clauses and corresponding cause clauses, which have recently received growing attention. Previous methods sequentially encode features with a specified order. They first encode the emotion and cause features for clause extraction and then combine them for pair extraction. This lead to an imbalance in inter-task feature interaction where features extracted later have no direct contact with the former. To address this issue, we propose a novel Pair-Based Joint Encoding (PBJE) network, which generates pairs and clauses features simultaneously in a joint feature encoding manner to model the causal relationship in clauses. PBJE can balance the information flow among emotion clauses, cause clauses and pairs. From a multi-relational perspective, we construct a heterogeneous undirected graph and apply the Relational Graph Convolutional Network (RGCN) to capture the various relationship between clauses and the relationship between pairs and clauses. Experimental results show that PBJE achieves state-of-the-art performance on the Chinese benchmark corpus.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Junlong Liu (9 papers)
  2. Xichen Shang (3 papers)
  3. Qianli Ma (77 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.