Papers
Topics
Authors
Recent
2000 character limit reached

MiLMo:Minority Multilingual Pre-trained Language Model

Published 4 Dec 2022 in cs.CL | (2212.01779v2)

Abstract: Pre-trained LLMs are trained on large-scale unsupervised data, and they can fine-turn the model only on small-scale labeled datasets, and achieve good results. Multilingual pre-trained LLMs can be trained on multiple languages, and the model can understand multiple languages at the same time. At present, the search on pre-trained models mainly focuses on rich resources, while there is relatively little research on low-resource languages such as minority languages, and the public multilingual pre-trained LLM can not work well for minority languages. Therefore, this paper constructs a multilingual pre-trained model named MiLMo that performs better on minority language tasks, including Mongolian, Tibetan, Uyghur, Kazakh and Korean. To solve the problem of scarcity of datasets on minority languages and verify the effectiveness of the MiLMo model, this paper constructs a minority multilingual text classification dataset named MiTC, and trains a word2vec model for each language. By comparing the word2vec model and the pre-trained model in the text classification task, this paper provides an optimal scheme for the downstream task research of minority languages. The final experimental results show that the performance of the pre-trained model is better than that of the word2vec model, and it has achieved the best results in minority multilingual text classification. The multilingual pre-trained model MiLMo, multilingual word2vec model and multilingual text classification dataset MiTC are published on http://milmo.cmli-nlp.com/.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.