Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Evolutionary Clustering Have Theoretical Guarantees? (2212.01771v2)

Published 4 Dec 2022 in cs.NE and cs.LG

Abstract: Clustering is a fundamental problem in many areas, which aims to partition a given data set into groups based on some distance measure, such that the data points in the same group are similar while that in different groups are dissimilar. Due to its importance and NP-hardness, a lot of methods have been proposed, among which evolutionary algorithms are a class of popular ones. Evolutionary clustering has found many successful applications, but all the results are empirical, lacking theoretical support. This paper fills this gap by proving that the approximation performance of the GSEMO (a simple multi-objective evolutionary algorithm) for solving four formulations of clustering, i.e., $k$-tMM, $k$-center, discrete $k$-median and $k$-means, can be theoretically guaranteed. Furthermore, we consider clustering under fairness, which tries to avoid algorithmic bias, and has recently been an important research topic in machine learning. We prove that for discrete $k$-median clustering under individual fairness, the approximation performance of the GSEMO can be theoretically guaranteed with respect to both the objective function and the fairness constraint.

Citations (1)

Summary

We haven't generated a summary for this paper yet.