Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of AI Techniques in Mobile Applications (2212.01635v3)

Published 3 Dec 2022 in cs.SE and cs.AI

Abstract: The integration of AI into mobile applications has significantly transformed various domains, enhancing user experiences and providing personalized services through advanced ML and deep learning (DL) technologies. AI-driven mobile apps typically refer to applications that leverage ML/DL technologies to perform key tasks such as image recognition and natural language processing. In this paper, we conducted the most extensive empirical study on AI applications, exploring on-device ML apps, on-device DL apps, and AI service-supported (cloud-based) apps. Our study encompasses 56,682 real-world AI applications, focusing on three crucial perspectives: 1) Application analysis, where we analyze the popularity of AI apps and investigate the update states of AI apps; 2) Framework and model analysis, where we analyze AI framework usage and AI model protection; 3) User analysis, where we examine user privacy protection and user review attitudes. Our study has strong implications for AI app developers, users, and AI R&D. On one hand, our findings highlight the growing trend of AI integration in mobile applications, demonstrating the widespread adoption of various AI frameworks and models. On the other hand, our findings emphasize the need for robust model protection to enhance app security. Additionally, our study highlights the importance of user privacy and presents user attitudes towards the AI technologies utilized in current AI apps. We provide our AI app dataset (currently the most extensive AI app dataset) as an open-source resource for future research on AI technologies utilized in mobile applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.