Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Learned Pixel-by-Pixel Lossless Image Compression Method with 59K Parameters and Parallel Decoding (2212.01185v1)

Published 2 Dec 2022 in eess.IV and cs.MM

Abstract: This paper considers lossless image compression and presents a learned compression system that can achieve state-of-the-art lossless compression performance but uses only 59K parameters, which is more than 30x less than other learned systems proposed recently in the literature. The explored system is based on a learned pixel-by-pixel lossless image compression method, where each pixel's probability distribution parameters are obtained by processing the pixel's causal neighborhood (i.e. previously encoded/decoded pixels) with a simple neural network comprising 59K parameters. This causality causes the decoder to operate sequentially, i.e. the neural network has to be evaluated for each pixel sequentially, which increases decoding time significantly with common GPU software and hardware. To reduce the decoding time, parallel decoding algorithms are proposed and implemented. The obtained lossless image compression system is compared to traditional and learned systems in the literature in terms of compression performance, encoding-decoding times and computational complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sinem Gumus (1 paper)
  2. Fatih Kamisli (10 papers)
Citations (3)