Papers
Topics
Authors
Recent
2000 character limit reached

Fair Graphical Resource Allocation with Matching-Induced Utilities

Published 2 Dec 2022 in cs.GT | (2212.01031v1)

Abstract: Motivated by real-world applications, we study the fair allocation of graphical resources, where the resources are the vertices in a graph. Upon receiving a set of resources, an agent's utility equals the weight of a maximum matching in the induced subgraph. We care about maximin share (MMS) fairness and envy-freeness up to one item (EF1). Regarding MMS fairness, the problem does not admit a finite approximation ratio for heterogeneous agents. For homogeneous agents, we design constant-approximation polynomial-time algorithms, and also note that significant amount of social welfare is sacrificed inevitably in order to ensure (approximate) MMS fairness. We then consider EF1 allocations whose existence is guaranteed. However, the social welfare guarantee of EF1 allocations cannot be better than $1/n$ for the general case, where $n$ is the number of agents.Fortunately, for three special cases, binary-weight, two-agents and homogeneous-agents, we are able to design polynomial-time algorithms that also ensure a constant fractions of the maximum social welfare.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.