Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SWL-Adapt: An Unsupervised Domain Adaptation Model with Sample Weight Learning for Cross-User Wearable Human Activity Recognition (2212.00724v2)

Published 25 Nov 2022 in eess.SP, cs.CV, and cs.LG

Abstract: In practice, Wearable Human Activity Recognition (WHAR) models usually face performance degradation on the new user due to user variance. Unsupervised domain adaptation (UDA) becomes the natural solution to cross-user WHAR under annotation scarcity. Existing UDA models usually align samples across domains without differentiation, which ignores the difference among samples. In this paper, we propose an unsupervised domain adaptation model with sample weight learning (SWL-Adapt) for cross-user WHAR. SWL-Adapt calculates sample weights according to the classification loss and domain discrimination loss of each sample with a parameterized network. We introduce the meta-optimization based update rule to learn this network end-to-end, which is guided by meta-classification loss on the selected pseudo-labeled target samples. Therefore, this network can fit a weighting function according to the cross-user WHAR task at hand, which is superior to existing sample differentiation rules fixed for special scenarios. Extensive experiments on three public WHAR datasets demonstrate that SWL-Adapt achieves the state-of-the-art performance on the cross-user WHAR task, outperforming the best baseline by an average of 3.1% and 5.3% in accuracy and macro F1 score, respectively.

Citations (21)

Summary

We haven't generated a summary for this paper yet.