Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Time-Efficient Approximate Kernelization for Connected Treedepth Deletion Set (2212.00418v1)

Published 1 Dec 2022 in cs.DS and cs.DM

Abstract: We study the CONNECTED \eta-TREEDEPTH DELETION problem where the input instance is an undireted graph G = (V, E) and an integer k. The objective is to decide if G has a set S \subseteq V(G) of at most k vertices such that G - S has treedepth at most \eta and G[S] is connected. As this problem naturally generalizes the well-known CONNECTED VERTEX COVER, when parameterized by solution size k, the CONNECTED \eta-TREEDEPTH DELETION does not admit polynomial kernel unless NP \subseteq coNP/poly. This motivates us to design an approximate kernel of polynomial size for this problem. In this paper, we show that for every 0 < \epsilon <= 1, CONNECTED \eta-TREEDEPTH DELETION SET admits a (1+\epsilon)-approximate kernel with O(k{2{\eta + 1/\epsilon}}) vertices, i.e. a polynomial-sized approximate kernelization scheme (PSAKS).

Summary

We haven't generated a summary for this paper yet.