Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KRLS: Improving End-to-End Response Generation in Task Oriented Dialog with Reinforced Keywords Learning (2211.16773v5)

Published 30 Nov 2022 in cs.CL

Abstract: In task-oriented dialogs (TOD), reinforcement learning (RL) algorithms train a model to directly optimize response for task-related metrics. However, RL needs to perform exploration, which can be time-consuming due to the slow auto-regressive sequence generation process. We investigate an approach to create a more efficient RL-based algorithm to improve TOD performance in an offline setting. First, we use a faster generation procedure that samples from independent next-word distributions after training the LLM (LM) with supervised learning. We then introduce a fine-grained reward function to help the model focus on learning key information in a dialog, by measuring the importance and semantic closeness of each generated token. Experiments on the MultiWoZ dataset show our new training algorithm, Keywords Reinforcement Learning with Next-word Sampling (KRLS), achieves state-of-the-art performance on the end-to-end response generation task, with a 15% training time reduction compared to a standard RL algorithm using auto-regressive generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiao Yu (66 papers)
  2. Qingyang Wu (29 papers)
  3. Kun Qian (87 papers)
  4. Zhou Yu (206 papers)
Citations (8)