Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the automorphism group of a toral variety (2211.16584v2)

Published 29 Nov 2022 in math.AG

Abstract: Let $\mathbb{K}$ be an algebraically closed field of characteristic zero. An affine algebraic variety $X$ over $\mathbb{K}$ is toral if it is isomorphic to a closed subvariety of a torus $(\mathbb{K}*)d$. We study the group $\mathrm{Aut}(X)$ of regular automorpshims of a toral variety $X$. We prove that if $T$ is a maximal torus in $\mathrm{Aut}(X)$, then $X$ is a direct product $Y\times T$, where $Y$ is a toral variety with a trivial maximal torus in the automorphism group. We show that knowing $\mathrm{Aut}(Y)$, one can compute $\mathrm{Aut}(X)$. In the case when the rank of the group $\mathbb{K}[Y]/\mathbb{K}^$ is $\dim Y + 1$, the group $\mathrm{Aut}(Y)$ can be described explicitly.

Citations (3)

Summary

We haven't generated a summary for this paper yet.