Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offline Policy Evaluation and Optimization under Confounding (2211.16583v4)

Published 29 Nov 2022 in stat.ML and cs.LG

Abstract: Evaluating and optimizing policies in the presence of unobserved confounders is a problem of growing interest in offline reinforcement learning. Using conventional methods for offline RL in the presence of confounding can not only lead to poor decisions and poor policies, but also have disastrous effects in critical applications such as healthcare and education. We map out the landscape of offline policy evaluation for confounded MDPs, distinguishing assumptions on confounding based on whether they are memoryless and on their effect on the data-collection policies. We characterize settings where consistent value estimates are provably not achievable, and provide algorithms with guarantees to instead estimate lower bounds on the value. When consistent estimates are achievable, we provide algorithms for value estimation with sample complexity guarantees. We also present new algorithms for offline policy improvement and prove local convergence guarantees. Finally, we experimentally evaluate our algorithms on both a gridworld environment and a simulated healthcare setting of managing sepsis patients. In gridworld, our model-based method provides tighter lower bounds than existing methods, while in the sepsis simulator, our methods significantly outperform confounder-oblivious benchmarks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com