Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCDetector: An IoT terminal vulnerability mining system based on distributed deep ensemble learning under source code representation (2211.16235v2)

Published 29 Nov 2022 in cs.CR and cs.AI

Abstract: Context: The IoT system infrastructure platform facility vulnerability attack has become the main battlefield of network security attacks. Most of the traditional vulnerability mining methods rely on vulnerability detection tools to realize vulnerability discovery. However, due to the inflexibility of tools and the limitation of file size, its scalability It is relatively low and cannot be applied to large-scale power big data fields. Objective: The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++. This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model. Method: In this paper, a new directional vulnerability mining method of parallel ensemble learning is proposed to solve the problem of large-scale data vulnerability mining. By extracting sensitive functions and statements, a sensitive statement library of vulnerable codes is formed. The AST stream-based vulnerability code slice with higher granularity performs doc2vec sentence vectorization on the source code through the random sampling module, obtains different classification results through distributed training through the Bi-LSTM trainer, and obtains the final classification result by voting. Results: This method designs and implements a distributed deep ensemble learning system software vulnerability mining system called DCDetector. It can make accurate predictions by using the syntactic information of the code, and is an effective method for analyzing large-scale vulnerability data. Conclusion: Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Wen Zhou (38 papers)