Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A High Availability Management Model based on VM Significance Ranking and Resource Estimation for Cloud Applications (2211.16117v1)

Published 29 Nov 2022 in cs.DC

Abstract: Massive upsurge in cloud resource usage stave off service availability resulting into outages, resource contention, and excessive power-consumption. The existing approaches have addressed this challenge by providing multi-cloud, VM migration, and running multiple replicas of each VM which accounts for high expenses of cloud data centre (CDC). In this context, a novel VM Significance Ranking and Resource Estimation based High Availability Management (SRE-HM) Model is proposed to enhance service availability for users with optimized cost for CDC. The model estimates resource contention based server failure and organises needed resources beforehand for maintaining desired level of service availability. A significance ranking parameter is introduced and computed for each VM, executing critical or non-critical tasks followed by the selection of an admissible High Availability (HA) strategy respective to its significance and user specified constraints. It enables cost optimization for CDC by rendering failure tolerance strategies for significant VMs only instead of all the VMs. The proposed model is evaluated and compared against state-of-the-arts by executing experiments using Google Cluster dataset. SRE-HM improved the services availability up to 19.56% and scales down the number of active servers and power-consumption up to 26.67% and 19.1%, respectively over HA without SRE-HM.

Citations (20)

Summary

We haven't generated a summary for this paper yet.