Posterior Sampling for Continuing Environments (2211.15931v3)
Abstract: We develop an extension of posterior sampling for reinforcement learning (PSRL) that is suited for a continuing agent-environment interface and integrates naturally into agent designs that scale to complex environments. The approach, continuing PSRL, maintains a statistically plausible model of the environment and follows a policy that maximizes expected $\gamma$-discounted return in that model. At each time, with probability $1-\gamma$, the model is replaced by a sample from the posterior distribution over environments. For a choice of discount factor that suitably depends on the horizon $T$, we establish an $\tilde{O}(\tau S \sqrt{A T})$ bound on the Bayesian regret, where $S$ is the number of environment states, $A$ is the number of actions, and $\tau$ denotes the reward averaging time, which is a bound on the duration required to accurately estimate the average reward of any policy. Our work is the first to formalize and rigorously analyze the resampling approach with randomized exploration.