Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local-global principle and integral Tate conjecture for certain varieties (2211.15915v3)

Published 29 Nov 2022 in math.AG

Abstract: We give a geometric criterion to check the validity of the integral Tate conjecture for one-cycles on a smooth projective variety that is separably rationally connected in codimension one, and to check that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on a separably rationally connected variety defined over a global function field. We prove that the Brauer-Manin obstruction is the only obstruction to the local-global principle for zero-cycles on all geometrically rational surfaces defined over a global function field, and to the Hasse principle for rational points on del Pezzo surfaces of degree four defined over a global function field of odd characteristic. Along the way, we also prove some results about the space of one-cycles on a smooth projective variety that is separably rationally connected in codimension one, which leads to the equality of the coniveau filtration and the strong coniveau filtration on degree $3$ homology of such varieties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.