Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Heterogeneous Causal Learning for Resource Allocation Problems in Marketing (2211.15728v2)

Published 28 Nov 2022 in cs.LG and cs.AI

Abstract: Marketing is an important mechanism to increase user engagement and improve platform revenue, and heterogeneous causal learning can help develop more effective strategies. Most decision-making problems in marketing can be formulated as resource allocation problems and have been studied for decades. Existing works usually divide the solution procedure into two fully decoupled stages, i.e., ML and operation research (OR) -- the first stage predicts the model parameters and they are fed to the optimization in the second stage. However, the error of the predicted parameters in ML cannot be respected and a series of complex mathematical operations in OR lead to the increased accumulative errors. Essentially, the improved precision on the prediction parameters may not have a positive correlation on the final solution due to the side-effect from the decoupled design. In this paper, we propose a novel approach for solving resource allocation problems to mitigate the side-effects. Our key intuition is that we introduce the decision factor to establish a bridge between ML and OR such that the solution can be directly obtained in OR by only performing the sorting or comparison operations on the decision factor. Furthermore, we design a customized loss function that can conduct direct heterogeneous causal learning on the decision factor, an unbiased estimation of which can be guaranteed when the loss converges. As a case study, we apply our approach to two crucial problems in marketing: the binary treatment assignment problem and the budget allocation problem with multiple treatments. Both large-scale simulations and online A/B Tests demonstrate that our approach achieves significant improvement compared with state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hao Zhou (351 papers)
  2. Shaoming Li (4 papers)
  3. Guibin Jiang (4 papers)
  4. Jiaqi Zheng (14 papers)
  5. Dong Wang (628 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.