Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting pathways for old and new metabolites through clustering (2211.15720v1)

Published 28 Nov 2022 in q-bio.BM, cs.LG, and q-bio.MN

Abstract: The diverse metabolic pathways are fundamental to all living organisms, as they harvest energy, synthesize biomass components, produce molecules to interact with the microenvironment, and neutralize toxins. While discovery of new metabolites and pathways continues, the prediction of pathways for new metabolites can be challenging. It can take vast amounts of time to elucidate pathways for new metabolites; thus, according to HMDB only 60% of metabolites get assigned to pathways. Here, we present an approach to identify pathways based on metabolite structure. We extracted 201 features from SMILES annotations, and identified new metabolites from PubMed abstracts and HMDB. After applying clustering algorithms to both groups of features, we quantified correlations between metabolites, and found the clusters accurately linked 92% of known metabolites to their respective pathways. Thus, this approach could be valuable for predicting metabolic pathways for new metabolites.

Citations (1)

Summary

We haven't generated a summary for this paper yet.