Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilising physics-guided deep learning to overcome data scarcity (2211.15664v3)

Published 24 Nov 2022 in cs.LG and cs.CE

Abstract: Deep learning (DL) relies heavily on data, and the quality of data influences its performance significantly. However, obtaining high-quality, well-annotated datasets can be challenging or even impossible in many real-world applications, such as structural risk estimation and medical diagnosis. This presents a significant barrier to the practical implementation of DL in these fields. Physics-guided deep learning (PGDL) is a novel type of DL that can integrate physics laws to train neural networks. This can be applied to any systems that are controlled or governed by physics laws, such as mechanics, finance and medical applications. It has been demonstrated that, with the additional information provided by physics laws, PGDL achieves great accuracy and generalisation in the presence of data scarcity. This review provides a detailed examination of PGDL and offers a structured overview of its use in addressing data scarcity across various fields, including physics, engineering and medical applications. Moreover, the review identifies the current limitations and opportunities for PGDL in relation to data scarcity and offers a thorough discussion on the future prospects of PGDL.

Citations (2)

Summary

We haven't generated a summary for this paper yet.