Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Replacing Automatic Differentiation by Sobolev Cubatures fastens Physics Informed Neural Nets and strengthens their Approximation Power (2211.15443v1)

Published 23 Nov 2022 in math.NA, cs.LG, and cs.NA

Abstract: We present a novel class of approximations for variational losses, being applicable for the training of physics-informed neural nets (PINNs). The loss formulation reflects classic Sobolev space theory for partial differential equations and their weak formulations. The loss computation rests on an extension of Gauss-Legendre cubatures, we term Sobolev cubatures, replacing automatic differentiation (A.D.). We prove the runtime complexity of training the resulting Soblev-PINNs (SC-PINNs) to be less than required by PINNs relying on A.D. On top of one-to-two order of magnitude speed-up the SC-PINNs are demonstrated to achieve closer solution approximations for prominent forward and inverse PDE problems than established PINNs achieve.

Citations (4)

Summary

We haven't generated a summary for this paper yet.