Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAF: A novel multimodal emotion recognition approach integrating face, body and text (2211.15425v1)

Published 20 Nov 2022 in cs.CV and cs.AI

Abstract: Multimodal emotion analysis performed better in emotion recognition depending on more comprehensive emotional clues and multimodal emotion dataset. In this paper, we developed a large multimodal emotion dataset, named "HED" dataset, to facilitate the emotion recognition task, and accordingly propose a multimodal emotion recognition method. To promote recognition accuracy, "Feature After Feature" framework was used to explore crucial emotional information from the aligned face, body and text samples. We employ various benchmarks to evaluate the "HED" dataset and compare the performance with our method. The results show that the five classification accuracy of the proposed multimodal fusion method is about 83.75%, and the performance is improved by 1.83%, 9.38%, and 21.62% respectively compared with that of individual modalities. The complementarity between each channel is effectively used to improve the performance of emotion recognition. We had also established a multimodal online emotion prediction platform, aiming to provide free emotion prediction to more users.

Citations (3)

Summary

We haven't generated a summary for this paper yet.