Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-tuned Sentiment Analysis of COVID-19 Vaccine-Related Social Media Data: Comparative Study (2211.15407v1)

Published 17 Oct 2022 in cs.CL and cs.SI

Abstract: This study investigated and compared public sentiment related to COVID-19 vaccines expressed on two popular social media platforms, Reddit and Twitter, harvested from January 1, 2020, to March 1, 2022. To accomplish this task, we created a fine-tuned DistilRoBERTa model to predict sentiments of approximately 9.5 million Tweets and 70 thousand Reddit comments. To fine-tune our model, our team manually labeled the sentiment of 3600 Tweets and then augmented our dataset by the method of back-translation. Text sentiment for each social media platform was then classified with our fine-tuned model using Python and the Huggingface sentiment analysis pipeline. Our results determined that the average sentiment expressed on Twitter was more negative (52% positive) than positive and the sentiment expressed on Reddit was more positive than negative (53% positive). Though average sentiment was found to vary between these social media platforms, both displayed similar behavior related to sentiment shared at key vaccine-related developments during the pandemic. Considering this similar trend in shared sentiment demonstrated across social media platforms, Twitter and Reddit continue to be valuable data sources that public health officials can utilize to strengthen vaccine confidence and combat misinformation. As the spread of misinformation poses a range of psychological and psychosocial risks (anxiety, fear, etc.), there is an urgency in understanding the public perspective and attitude toward shared falsities. Comprehensive educational delivery systems tailored to the population's expressed sentiments that facilitate digital literacy, health information-seeking behavior, and precision health promotion could aid in clarifying such misinformation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chad A Melton (4 papers)
  2. Brianna M White (4 papers)
  3. Robert L Davis (3 papers)
  4. Robert A Bednarczyk (2 papers)
  5. Arash Shaban-Nejad (23 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.