Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Multimodal Entity-Relation Extraction Based on Edge-enhanced Graph Alignment Network and Word-pair Relation Tagging (2211.15028v2)

Published 28 Nov 2022 in cs.CL, cs.AI, and cs.MM

Abstract: Multimodal named entity recognition (MNER) and multimodal relation extraction (MRE) are two fundamental subtasks in the multimodal knowledge graph construction task. However, the existing methods usually handle two tasks independently, which ignores the bidirectional interaction between them. This paper is the first to propose jointly performing MNER and MRE as a joint multimodal entity-relation extraction task (JMERE). Besides, the current MNER and MRE models only consider aligning the visual objects with textual entities in visual and textual graphs but ignore the entity-entity relationships and object-object relationships. To address the above challenges, we propose an edge-enhanced graph alignment network and a word-pair relation tagging (EEGA) for JMERE task. Specifically, we first design a word-pair relation tagging to exploit the bidirectional interaction between MNER and MRE and avoid the error propagation. Then, we propose an edge-enhanced graph alignment network to enhance the JMERE task by aligning nodes and edges in the cross-graph. Compared with previous methods, the proposed method can leverage the edge information to auxiliary alignment between objects and entities and find the correlations between entity-entity relationships and object-object relationships. Experiments are conducted to show the effectiveness of our model.

Citations (41)

Summary

We haven't generated a summary for this paper yet.